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Abstract — A mixed formulation for the three-dimensional analysis of steady heat-conduction problems is
presented. The method developed permits prescription of the boundary conditions in terms of either the
temperature or the heat flux, or a combination of both. The general expressions for the temperature and the
heat fluxes are derived in the form of a series in powers of the linear partial differential operators which
operate on a set of initial functions to be determined by the prescribed boundary conditions. One of the
important features of this method is its ability in providing approximate solutions in closed form. In order to
illustrate the procedure some representative example problems with respect to thick plates have been solved,
the corresponding solutions leading to results of engineering accuracy.

NOMENCLATURE
x, Y, z, rectangular cartesian co-ordinates;
21, 2h, length, and thickness of the plate (also
21=1L);
T(x, y,z), temperature field;
4 4, 4., heat flow components, and g = g,;

k, thermal conductivity;

un

u”, rate of heat generated in the body;

Ty, 9o, values of T and q at the reference plane,
z=0;

Lyr, Ly, linear partial differential operators;

LqT’ qu’

B, Biot number defined in equation (50);

H,, radiative boundary conductance.

Greek symbols

a, B, &, differential operators, = d/dx, 0/dy, 8/0z
respectively;
})2, aZ + ﬂl = VZ.
INTRODUCTION

SoLUTIONS to steady heat-conduction problems can be
obtained by using various methods currently available
in literature, for instance see references [1, 2]. The
more widely used methods among these are those of
the separation of variables which provide exact so-
lutions, and the variational methods, in conjunction
with either Ritz or Kontrovich procedure, which
furnish approximate solutions. In all these methods
the unknown independent quantity to be determined is
the temperature field, and the associated boundary
conditions are either the temperature or its first
derivatives, or a combination of both. However, a
mixed method, which involves the determination of
both temperature and heat flux as independent quan-
tities in association with a mixed form of boundary
conditions expressed in terms of these quantities, has
so far not been published.

In this paper a mixed method is presented for
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carrying out the three-dimensional analysis of steady
heat-conduction problems. The proposed method is
analogous to that employed in the study of elasticity
problems, described earlier by Vlassov [3] and later
applied to the analysis of thick plates by Iyengar et al.
[4]. The differences as observed in the present for-
mulation and the nature of the solutions obtained arise
essentially from its application to the study of pro-
blems of a different branch of science. The method
developed gives complete choice in prescribing the
boundary conditions in terms of either the tempera-
ture or heat flux or a combination of both. The general
expressions for the temperature field and the heat flux
are derived in a series form in powers of the co-
ordinate in the thickness direction and also in powers
of the linear differential operators with respect to the
other two co-ordinates, which operate on a set of initial
functions to be evaluated by the prescribed boundary
conditions or, alternately, these quantities can also be
expressed in a transcendental form in terms of tri-
gonometric functions containing the coordinate in the
thickness direction and the differential operators
operating on the initial functions. This procedure
reduces the three-dimensional formulation to a two-
dimensional one containing the derivatives operating
on the initial functions, thereby decreasing the com-
plexity involved. The procedure to be followed in
arriving at the solution is illustrated by applying it to
the analysis of thick plates (or slabs); some repre-
sentative example problems are considered for this
purpose. The proposed formulation can provide exact
solutions which can be obtained by retaining all terms
in the series expansions, referred to above. The cor-
responding solutions in respect of certain class of
problems are found to be identical to those obtained
by the method of separation of variables. However, the
forte of the method is its ability in providing appro-
ximate solutions in closed form.

From the stress analysis point of view it may be
desirable, and also usually adequate, to retain only a
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finite number of terms in the series, which may lead to
approximate solutions to the problems with engineer-
ing accuracy. These approximate solutions are, in
many cases, found to be compatible with the finite
number of terms correspondingly retained in the
formulation of the associated thermal stress problems
in which some of these terms will be present. Some of
the results presented here have been used by the author
in the analysis of thermal stress problems associated
with thick plates [5]. A question arises as to the utility
of approximate solutions when powerful numerical
techniques are available which can be applied to
problems associated with complex geometries and
boundary conditions. In defence of approximate sol-
utions it must be stated that frequently an engineer
needs quick, though approximate, results for an im-
mediate task on hand, for instance, when rapid

estimates are desired or when analytical temperature '

expressions are needed for further calculations of
thermal stresses, or when the general physical aspects
of the solutions are to be emphasized. Therefore, such
methods appear to fulfill a useful practical role,
occupying a middle ground between exact solutions
and purely numerical analyses. The proposed for-
mulation can be applied to practical problems as-
sociated with complex geometries and boundary con-
ditions, for instance, by using the least squares point
matching technique in conjunction with a polar co-
ordinate system. The least squares point matching
technique has been applied to the analyses of tempera-
ture and thermal stress problems of thin rectangular
plates with cutouts by using a polar coordinate system
[6, 7). The procedure to be followed in the analyses of
thick plates is similar.

In order to illustrate the procedure three typical
example problems have been solved and the results
compared with those of the exact method, where
possible. The comparison study has yielded interesting
results which demonstrate the versatility of the pro-
posed procedure.

FORMULATION OF THE PROBLEM
The governing equation for steady heat conduction
in a solid is given as:

o o 8
_"“qx_“qy—A'“qz_f'u =0

1
0x dy oz )

and the associated Fourier’s law of heat conduction for
isotropic solids may be expressed as:

orT oT

= —k— =—k_— 2

dx A B 2 @
aoT

q, = — k— (3)

0z

In equations (1)-(3), ¢, 4,, 4. and T are heat flow
components and temperature field respectively. k is the
thermal conductivity and v the rate of heat generated
in the body.

In carrying out further formulation the following

M. N. Baru Rao

symbols will be used:

o= 0/Cx, f=6/dy,
E=10/0z, q,=q.
=t 4 B = VR (4)

Substitution of equations (2) and (4) in equations (1)
and (3) leads to the following expressions:

&g =ky*T+ u” {5)

ET = — g/k. (6}
The heat conduction problem is completely defined by
equations (5) and (6).

The general solution of equations (5) and (6) can
now be expressed in terms of the unknown initial
functions Ty(x, y) and g4(x, y) on the reference plane;
in other words Ty and g, are the values of T(x, y, z) and
q(x, y, z), respectively, evaluated at z = 0. This can be
carried out by expanding the general solution of {5)
and (6) in MacLaurin series as

T(x, y,2)
22 .
= Tolx, ¥) + z[¢T], -0 + 51 (2T} =0 + - {7
4(x, y,2)
= qo(x, y) + 2[{q],=0 + ,, [Eql-o+ ... (®)

The derivatives appearing in equations (7) and (8}
can be readily derived from equations (5) and (6).
Following the elimination of these derivatives the
functions T and g can be completely expressed in terms
of the initial functions T, and g, and their partial
derivatives with respect to x and y as

T(x, y,z) = Lz, 7) - Ty + Lpglz,7) "qo —

‘I(-’C, _V’Z} = LqT(Z’ ./‘) ' 70 + qu(l, :' '(I()
where

Lyy = Ly, = cos(yz),

Ly, =

1
9 - };’Sin {(vz),

/
L,y = kysin(yz).

In equations (11) the linear differential operators
Lyy, Ly, ... etc., which can be expressed either in series
form in powers of yz or in trigonometric functions of
the argument yz, have been expressed in transcenden-
tal form containing the trigonometric functions, for
convenience sake.

The heat fluxes, g,, g, can also be expressed in a
similar manner as follows:

g. = — ka(cosyz) T, + %(sin 2o (12)

.
4, = — kBleosyz) Ty + ! (sinyz)ay  (13)
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Using equations (9)—(13) two- or three-dimensional
problems associated with various boundary con-
ditions can be solved.

The method formulated will now be illustrated by
applying it to heat-conduction problems of thick
plates. Three representative example problems are
solved for this purpose.

SAMPLE PROBLEMS

The general expressions for the temperature T
(x, y,z) and the heat flux g(x, y,z) as given by equa-
tions (9) and (10) are used for forming the governing
equations in the form appropriate to the nature of a
particular problem for which the solution is desired. If
no truncation is carried out in the series expansions of
these equations for forming the governing equations,
then the solutions to the latter are exact. The solutions
can be assumed in the desired form such that they
satisfy the prescribed boundary conditions exactly.
This procedure was in fact employed for obtaining
exact solutions in respect of three typical two- and
three-dimensional problems and the solutions were
found to be identical to those obtained by the method
of separation of variables. The corresponding results
are not presented here since the purpose of this paper is
to demonstrate the versatility of the proposed method
in obtaining approximate solutions in closed form.

On the other hand the governing equations formed
with respect to a finite number of terms retained in the
series, referred to above, lead to approximate so-
lutions, the order of accuracy achieved depending on
the number of terms considered in the series expan-
sion. Using this procedure approximate solutions will
now be obtained for three representative sample
problems.

Example 1: Two-dimensional problem with both tem-
perature and heat flux boundary conditions

The problem can be stated as follows (see Fig. 1)
—I<x<l, —h<z<h —0<y< ™

T=T(x,z)

T(-1L,2)=T(,2)=0 (14)
q(x,h) + Q(x) = 0; q(x, —h) =0 (15)
-
i
g A
re0 A ,’,
z S ax L T:0
4 Y
h s
h 7 X
L :r:_(——msuun-:o

FIG. 1. Coordinate system and boundary conditions for
examiple 1.
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0(x) = Qo[ 1 — (x/D?]-

Solution. Using equations (10) and (11) and satisfy-
ing the boundary conditions (15) and also noting the
two-dimensional character of the problem (i.e. y = «),
the following equations are obtained:

Lyr(h) To + Log(h) 40 = — Q(x)

(16)

(17
- LqT(h) ' TE) + qu(h) ‘qo = 0.

The second of equation (17) is satisfied by taking
’E) = qu(h) '(Da qO = LqT(h) (D (18)

Substitution of equation (18) in the first of equation
(17) leads to the following governing equation for @:

ka - (sin20th) - @ = — Q(x). (19)
The governing equation and the expressions for T
and g, as given by equations (19), {9) and (12)

respectively, when expressed in series form, are given
as:

(2ah)®  (2ah)®
ka[Zah— 3l TR D= - Q(x)
(20)
z? z*
— g Tt
T—[l 2!01 +4!<x ,]
hz 2 ¥ 4
[1-5“ +Htx - ,:,(D

g, = — kaT. (22)

In forming equations (20)-(22), equations (11) and
(18) have been made use of. It can be observed that the
coefficients of @ as given in equation (20), have been
obtained in series form in even powers, 2n, of the
differential operatora, (n = 1,2,... o). Solution to this
equation can be obtained after retaining only a finite
number of terms in the equation. The number of terms
to be considered depends on the desired degree of
accuracy and the type of the problem considered. As n
increases from 1 to a finite number, say N, the number
of boundary conditions associated with the problem
that can be satisfied at each edge of the slab (in x
direction) is equal to N and, therefore, the number of
terms in the series, associated with powers of z in
equations (21) and (22) that must be considered, is also
N. Consequently, as the order of the governing
equation increases the complexity of the problem also
correspondingly increases.

In order to demonstrate the procedure, solutions
corresponding to the first and second order approxi-
mations are obtained in the following manner. For the
sake of convenience, Q(x) is approximated by a
polynomial function as given in equation (16).
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First order approximation

The governing equation for this case as derived from
equation (20) with only the first term retained, and the
boundary condition (14), consistent with the sym-
metry of the problem about the z axis are obtained as:

220 = — Qo1 — x2/%)/2kh (23)
4,(0,2) = T(l,z) = 0. (24)

The series associated with powers of h and z in
equations (20), (21) and (22) will be referred to as h-
series and z-series, respectively. Consequent to the
retention of one term only in the h-series of equation
(20), it is necessary to retain one term only in each k-
series of equations (21) and (22). However the order of
equation (23), (which is 2n, n = 1), requires retention of
terms of the order of unity only in the z-series of
equations (21) and (22).

Integration of equation (23) and satisfaction of the
boundary condition (24} lead to the solution.

reasto= (o G =) 5
(25)

where,

Qo = on l/ k.

Second order approximation

(26)

Considering two terms only in equation (20) a
fourth order differential equation is obtained. The
corresponding governing equation and its solution can
be written as follows:

3Q,
akh?

®=A-coshH'?x + B-sinhH'?x +¢cx+ D
2060\ 1Y (2! E“
(sl ()
h 21 x\?
()-GO 6) | e

(a“—Hocz)(D=< )[1-(x/l)2] @7)

where
3
2n?
|
1
; T8, — A /,L"‘""\""‘
7
4
Y »
/ T
4
4
7
.
h Vs
v
h . x f

T=0

Fi6. 2. Coordinate system and boundary conditions for
example 2.
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In equation (28) the first four terms are the homo-
geneous solutions and the remaining terms are parti-
cular integrals. The constants A, B, C and D are
determined from the boundary conditions.

For this case two terms in each of the h-series and
one term in each of the z-series in equations (21) and
(22) must be considered, in view of the order of the
governing equation being equal to 2n with n = 2.

Using equations (21), (22) and (28), the constants A,
B, C and D can be determined from the boundary
conditions (24). The final expression for T can be
written as

T=T/Q, = [fi + f(x/D* + £
(x/h* + f, cosh H'2x]

+ /Mgy + g2(x/1)* + g5 cosh H' x| (29)

where
1, = (5/96R) — B/12 + (4/9)>
fo = (B12) — (1/16R); h = h2!
fy = 1/(96h); f, = — (4/9)(h*jcosh HY 2 1)
gy = —2h +h/2; g, = — k)2
g5 = 2h/cosh H!2l.

1t will be interesting to compare the above two
approximate solutions with the exact solution, ob-
tained by the method of separation of variables and
associated with the boundary heat flux at z: =
represented by a single harmonic function (ie. Q
(x) = Qg sin nx/L with the origin located at the left
edge of the slab, and L = 2I), very nearly equivalent to
the distribution of the present problem.

The numerical values for the non-dimensionalized
T at x = z = 0 for h/2l = £ corresponding to first and
second approximation of the present example are
found to be equal to 0.3125 and 0.3006, respectively.
Comparing these values with the exact value of 0.2905,
the percentage errors in respect of first and second
approximation results are 7.5 and 3.46 respectively.
Since the problem is asymmetric with respect to the X-
axis, the solution corresponding to the first approxi-
mation, which is found to be symmetric about this axis,
gives very inaccurate results for non-zero values of z.
The solution obtained from the second order approxi-
mation provides reasonably good results for small
values of h/2l. For large values of /2] approaching
unity additional terms in equation (20) must be
considered.

Example 2: Two-dimensional problem with temperature

boundary conditions only
The problem may be stated as follows (see Fig. 2)
0<x< 7, —hgzgh — 72 <y«

T=T(x,z) (30)
Boundary conditions:

T(x, - h)y=Tx,h =0 (31
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T(,z) =0, (32)
Symmetry condition:

(33)
Solution. The general expression for the temperature as
given by equation (9) subject to the symmetry con-
dition (33) can be written as

4o =0.

22 z*
= Yy SRV VL
T(x,z)—[l AT ...,]To. (34)
Following the satisfaction of the boundary con-
ditions (31), equation (34) gives

n? h*
R R S -
[1 T +4!a ...,]To 0. (35)

Solutions to equation (35) will now be presented for
two cases (cases 1 and 2) corresponding to two and
three terms, respectively, retained in the above h-
series ; the governing equations for these two cases are
given as

Case 1:
(@ = 2/h*) Ty =0 (36)
Case 2:
12 24
(a‘* - Faz + F) To=0. 37)

Solutions to the second and fourth order equations
(36) and (37) which permit satisfaction of one and two
boundary conditions only, respectively, at each boun-
dary associated with the X axis can be written as

Case 1:

To(x) = E-e P 4 F -t (38)

Case 2:

’I;)(x) = A.e—hx/h + B,e—zzx/h + C~e‘3"”‘ + D-e“"‘/".
39

In equations (38) and (39) 4, B, C, D, E and F are
arbitrary constants to be determined from the boun-
dary conditions, and A, to A, and j are known
constants. It may be pointed out here that the heat
applied to the boundary at x = 0 with T'= 8, cannot
be expected to have much influence at large distances
from this boundary, since the slab is infinite in extent in
the x direction; from this physical consideration the
constants F, C and D can be taken to be equal to zero.
Consideration of one term only for case 1 and two
terms only for case 2 in the z-series of equation (34),
leads to the determination of the remaining constants
E, A and B. The final solutions to the problem can then
be written as:

Case 1:

T/8o = (1 — 2*/h?) e~ 6" (40)
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Case 2:

2 22 A .,
T/90=(—__—),§—zlf){l—h—271+h_4§i "€ Auxfh

A2 223 A
"(15_&){1':1—2'7*?& e

where

B=12
Ay =(6+ 2312, 1, = (6 —2/3)'".

It can be observed from equations (40) and (41) that
the boundary conditions (31) are exactly satisfied.
However, the boundary conditions (32) is not exactly
satisfied since the number of terms considered in the z-
series of equation (34) for satisfying this boundary
condition is less by one than the corresponding
number of terms retained in this series for forming the
governing equations (36) and (37). This point will now
be examined in greater detail

The expressions for the temperature at the boun-
dary x = 0 obtained from equations (40) and (41) and
also the corresponding expression as given by the
method of separation of variables, (see equation 4-71,
p. 199 of [2]), are given as

Case 1: T/8y = 1 — (z/h)? 42)
Case 2: T/0y =1 — (z/h)* 43)
Case 3: © (= 1)
T/8, = (2/h) Y, G cos 6,2 (44)
n=0

where 6, = (2n + 1)n/2h, n =0,1,2,....

Equations (42) and (43) satisfy the boundary con-
dition at x = 0, exactly at the point z = 0 and at points
with z # 0 the errors are of the order of z2 and z* for
cases 1 and 2 respectively. Clearly case 2, in which the
number of terms retained is greater by one than that
for case 1, gives more accurate results than case 1. The
accuracy of results can be increased by retaining more
number of terms in the z-series of equation (34), which
inevitably increases the complexity of the problem. It
may be noted that case 3, which corresponds to the
method of separation of variables, can satisfy the

[+ +)
~
]
1
/)_- -— _+ —— -
1 /// H’
INSULATED——A4- 4 s Z—INSULATED
z -, Hr
/, X
A /
d
JI
h 4
Y"/'L_/
h 7’ A
d
' A

F1G. 3. Coordinate system and boundary conditions for
example 3.
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boundary condition at x =0 only by considering
sufficient number of terms in the Fourier cosine series ;
it is interesting to note that this method cannot satisfy
the boundary condition exactly by retaining one term
only even at z = 0, whereas the present method does,
irrespective of the number of terms considered in the
general expression for the temperature.

Example 3. Three dimensional problem with mixed
boundary conditions

The problem may be stated as follows (see Fig. 3):

T=T(x, y,z)
0<x< 7, =gy, —h<gzgh
Boundary conditions:
afx, = hz) = gfxLz) =0 (45)

q(x9 ¥, i h) - H,[T(X, Vs i h) -
T, y,z) = F(y) = 8,, cosmny/l;
m=20,1,2,...7.

{(x, y)] = 0(46)

(47)
Symmetry condition:

go =0. (48)

Equation (46) is a simple form of radiation boundary
condition which is similar in form to the commonly
employed convective boundary condition. In this
equation H, is the radiative boundary conductance,

which is assumed to he a

........ 15 4ASSUInCG ¢ 2C &

constant in the nresant
constant 1n the present

problem, and {(x, y) is the temperature of the en-
closure around the slab.

Substitution of equations (9), (10) and (48) in
equation (46) leads to

(Zisin 7h — cos yh )To = —lxy)  (49)

r s

WllﬁlC

B, = hH jk. (50)

£ACHY PSS,

Equation (49) is the governing equation whose
solution can be determined for a given distribution of {
(x, y). For the purpose of illustrating the procedure, {
will be taken to be a constant. [t is convenient to obtain
the solution by considering { to be a reference

temperature such that

T(x, y,2) = T(x, y,2) + {
and the modified problem associated with T(x, y,z)
can then be stated as follows:
T Tly v =) (51)
i — l\/\,)’,«’ \v iy
Boundary conditions:
q(x, y,h) ~ H,T(x, y,h) =0 (52)
T, y,z) = F(y) = 8, cosmny/l;
T(x,y,2) =0 (53)
90 =0. (54)

The modified governing equation derived from
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with Tn rPr\IA(‘(-\d by 7. ang

r(
RALLC DY 1 dANG e

4) can be expressed as

equations {9) an

10)
equations (52) and (5

(yh sinyh — B, cosyh) T, = Q. (55)
Equation (55) can be expanded in series in even
powers of yh. The accuracy of the solution to this
equation is dependent on the number of terms retained
in the series. For illustration the governing equation as
derived from equation (55) with first three terms
retained in the series will now be considered for
obtaining the solution.

The corresponding governing ¢

associated solution satisfying the boundary conditions
(53) are given as

Governing equation:

[V* B‘ \v~’+ Rt 56)
AV AN Wl KOk
Solution:
R |
mo= (25 ) =560+ 56
a4 Xh . ‘777()»% )
x e ¥ cos ((5% - 5’%)
5% -\ 2 ‘21 -\ 4
‘ .l R .
x[l—z(h) +27(;,) le “urt cosn,y (57)
where
A = [0 + V125 g = [03 + ()] 7
31, = [{.Bl + (B1 - 4ﬁz ) 1728, ]1 2 (58}
By =(+2/B)2; S, =1(1+ 4/B,)/24

Hm = mm/l.

In the expression for 4, and 4, as given by equation
(58) the positive and negative signs correspond to the
subscripts 1 and 2 of § respectively. It may be noted
from the equation (57) that the boundary condition
(52) is exactly satisfied while the first of boundary
condition (53) (at x = 0) is exactly satisfied at the point

= 0 and at points with z # 0 the error is of the order

2:0 T T T

Br =0
n/l=0 4

0k ,
¥ \ ° /
I

i
B l N_
05 -0 15 20 25
X /h

F16. 4. Temperature distribution along the length of the plate

1:y/l=0: )l~05
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20 T T T
By =10
h/€=04
I
|0 - -
1 8]
~
[
i § i
00 0-25 050 075 1-0
Y/t

F1G. 5. Temperature distribution across the width of the plate
at x/h=0.1,1:2z/h=0;2:z/h=1.

of z*. This behaviour was also observed in the previous
example, and the reason given there for this behaviour
holds good for the present example also. The presence
of the decaying exponential functions in the solution
(57) suggests that the second of boundary condition
(53) is also satisfied.

In order to provide a better insight into the nature of
the general solution (57) a numerical example has been
solved by taking F'(y) = 7(1 + cos ny/l), (see Fig. 3),
for B, = 10 and the thickness ratio h/l = 0.4. Figures 4
and 5 display the corresponding temperature distri-
butions at three different cross sections, while Fig. 6
shows the distribution in the thickness direction at
x/h = 0.1 and y/l = 0. It is clear from Fig. 4 that the
temperature distribution exhibits a decaying character
with increases in x/h values as indicated by the
presence of the exponential functions in the solution
(57).

CONCLUSIONS

A mixed method for the three-dimensional analysis
of steady heat conduction in solids was presented. One
of the interesting features of the formulation was the
flexibility offered in prescribing the boundary con-
ditions in terms of either the temperature or the heat
flux, or both. The forte of the method was its ability in
providing approximate solutions in closed form. It was
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1-0

0-75F

o5

QZ/h

|
00 _ 10
T/7

20

FiG. 6. Temperature distribution across the thickness of the
plate at x/h = 0.1 and y/l = 0.

demonstrated through example problems that the
approximate solutions would lead to results of
engineering accuracy.
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SOLUTIONS DES PROBLEMES DE CONDUCTION THERMIQUE
PAR UNE METHODE MIXTE

Résumé — On présente une méthode mixte pour Panalyse tridimensionnelle des problémes de conduction
thermique stationnaire. La méthode développée permet la traduction des conditions aux limites en terme soit
de flux ou de température, soit des deux. Les expressions générales de la température et des flux sont obtenues
sous la forme de séries puissances de I'opérateur linéaire qui opére sur un systéme de fonctions initiales a
déterminer par les conditions aux limites données. Un des caractéres importants de cette méthode est son
aptitude 4 fournir des solutions approchées sous une forme analytique. Pour illustrer la procédure, on résout
quelques problémes représentatifs de plaques épaisses dont les solutions sont d’une précision intéressante
pour l'ingénieur.



450

M. N. Bapu RaO

LOSUNGEN VON WARMELEITUNGSPROBLEMEN DURCH EIN
KOMBINIERTES VERFAHREN

Zusammenfassung—FEs wird eine kombinierte Formulierung fiir die dreidimensionale Untersuchung von
stationdren Wirmeleitproblemen angegeben. Das entwickelte Verfahren gestattet Vorgaben der Randbedin-
gungen entweder durch Angabe der Temperatur oder des Wirmestroms oder einer Kombination von
beiden. Die allgemeinen Ausdriicke fiir die Temperatur und die Wirmestréme werden in Form einer
Potenzreihe der linearen partiellen Differentialoperatoren angegeben, die von einem Satz von Anfangsfunk-
tionen, bestimmt durch die vorgegebenen Randbedingungen, dargestellt werden. Eine der wichtigsten
Eigenschaften dieses Verfahrens ist die Moglichkeit, Ndherungslosungen in geschlossener Form anzugeben.
Um die Vorgehensweise zu veranschaulichen, sind einige représentative beispielhafte Problem dicker Platten
geldst worden, bei denen die entsprechenden Losungen zu Ergebnissen von ingenieurméBiger Genauigkeit
fithren.

PEIIEHHWE 3AJAY TEIJIOINPOBOAHOCTH KOMBUHHPOBAHHBIM METOJOM

Annoraums — JlaHa koMOHHHMpOBaHHas (GOPMYJHDOBKA CTAUMOHAPDHBIX 33434 TENJIONPOBOUAHOCTH.
[Mpensaraemsiii METOI O3BOJAET BHIPAXATh 3a[aBa€Mble PAHHMHBIC YCJIOBHsS 4Epe3 TeMIEpaTypy
WIH NJOTHOCTb TEIUIOBOTO MOTOKA, WM uepe3 uX codeTanue. [Tonyuennl oOIuue BBIDAXKEHHS s
TemnepaTyphl ¥ TUIOTHOCTH TEMIOBOIO NOTOKA B BU/E PHMOB MO CTENEHAM JMHCHHBIX JH(dEPeH-
LHATbHBIX ONEPATOPOB, KOTOPHIE AEHCTBYIOT Ha CHCTEMY (YHKUHH, ONPEACISEMBIX € MOMOLBIO
3a/aBacMbIX TPAHMMHBIX YCioBHi. OIHHM M3 OCHOBHbBIX JOCTOHHCTB METO[4 SBJISETCH TO, YTO OH
I03BOJIAET MONYYaTh NMPHOIMAEHHBIE PELICHHs B 3aMKHYTOM BHAe. C Ueibl0 HIIOCTPALHH METOAA
[aH NpUMEp PELUEHHsS HECKOJbLKMX XapakTePHBIX 3a/ay JUIS MIACTHH GoMbluoi ToMmmMbbL TOMHOCTH
O/IYHEHHBIX PE3YTLTATOB COOTBETCTBYET TPeGOBAHHMAM, NPEABABAAEMbIM HHKCHEPHBIMM DACIETAMH.



