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Abstract-A mixed formulation for the three-dimensional analysis of steady heat-conduction problems is 
presented. The method developed permits prescription of the boundary conditions in terms of either the 
temperature or the heat flux, or a combination of both. The general expressions for the temperature and the 
heat fluxes are derived in the form of a series in powers of the linear partial differential operators which 
operate on a set of initial functions to be determined by the prescribed boundary conditions. One of the 
important features of this method is its ability in providing approximate solutions in closed form. In order to 
illustrate the procedure some representative example problems with respect to thick plates have been solved, 

the corresponding solutions leading to results of engineering accuracy 
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NOMENCLATURE 

rectangular Cartesian co-ordinates ; 
length, and thickness of the plate (also 

21= L); 
temperature field; 
heat flow components, and q = q, ; 
thermal conductivity; 
rate of heat generated in the body; 
values of T and q at the reference plane, 
z=o; 
linear partial differential operators; 

Biot number defined in equation (50); 
radiative boundary conductance. 

Greek symbols 

4 P, 5, differential operators, = d/ax, ajay, a/az 
respectively; 

2 
Y 3 ‘X2 + p’ = v2. 

INTRODUCTION 

SOLUTIONS to steady heat-conduction problems can be 
obtained by using various methods currently available 
in literature, for instance see references [l, 23. The 
more widely used methods among these are those of 
the separation of variables which provide exact so- 
lutions, and the variational methods, in conjunction 
with either Ritz or Kontrovich procedure, which 
furnish approximate solutions. In all these methods 
the unknown independent quantity to be determined is 
the temperature field, and the associated boundary 
conditions are either the temperature or its first 
derivatives, or a combination of both. However, a 
mixed method, which involves the determination of 
both temperature and heat flux as independent quan- 
tities in association with a mixed form of boundary 
conditions expressed in terms of these quantities, has 
so far not been published. 

In this paper a mixed method is presented for 

carrying out the three-dimensional analysis of steady 
heat-conduction problems. The proposed method is 
analogous to that employed in the study of elasticity 
problems, described earlier by Vlassov [3] and later 
applied to the analysis of thick plates by Iyengar et al. 

[4]. The differences as observed in the present for- 
mulation and the nature of the solutions obtained arise 
essentially from its application to the study of pro- 
blems of a different branch of science. The method 
developed gives complete choice in prescribing the 
boundary conditions in terms of either the tempera- 
ture or heat flux or a combination of both. The general 
expressions for the temperature field and the heat flux 
are derived in a series form in powers of the co- 
ordinate in the thickness direction and also in powers 
of the linear differential operators with respect to the 
other two co-ordinates, which operate on a set of initial 
functions to be evaluated by the prescribed boundary 
conditions or, alternately, these quantities can also be 
expressed in a transcendental form in terms of tri- 
gonometric functions containing the coordinate in the 
thickness direction and the differential operators 
operating on the initial functions. This procedure 
reduces the three-dimensional formulation to a two- 
dimensional one containing the derivatives operating 
on the initial functions, thereby decreasing the com- 
plexity involved. The procedure to be followed in 
arriving at the solution is illustrated by applying it to 
the analysis of thick plates (or slabs); some repre- 
sentative example problems are considered for this 
purpose. The proposed formulation can provide exact 
solutions which can be obtained by retaining all terms 
in the series expansions, referred to above. The cor- 
responding solutions in respect of certain class of 
problems are found to be identical to those obtained 
by the method of separation of variables. However, the 
forte of the method is its ability in providing appro- 
ximate solutions in closed form. 

From the stress analysis point of view it may be 
desirable, and also usually adequate, to retain only a 
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finite number of terms in the series, which may lead to 
approximate solutions to the problems with engineer- 

ing accuracy. These approximate solutions are, in 
many cases, found to be compatible with the finite 
number of terms correspondingly retained in the 

formulation of the associated thermal stress problems 

in which some of these terms will be present. Some of 

the results presented here have been used by the author 
in the analysis of thermal stress problems associated 

with thick plates [5]. A question arises as to the utility 

of approximate solutions when powerful numerical 

techniques are available which can be applied to 
problems associated with complex geometries and 
boundary conditions. In defence of approximate sol- 
utions it must be stated that frequently an engineer 

needs quick, though approximate, results for an im- 
mediate task on hand, for instance, when rapid 
estimates are desired or when analytical temperature 

expressions are needed for further calculations of 

thermal stresses, or when the general physical aspects 
of the solutions are to be emphasized. Therefore, such 

methods appear to fulfill a useful practical role, 
occupying a middle ground between exact solutions 

and purely numerical analyses. The proposed for- 
mulation can be applied to practical problems as- 
sociated with complex geometries and boundary con- 
ditions, for instance, by using the least squares point 
matching technique in conjunction with a polar co- 

ordinate system. The least squares point matching 
technique has been applied to the analyses of tempera- 
ture and thermal stress problems of thin rectangular 

plates with cutouts by using a polar coordinate system 
[6,7]. The procedure to be followed in the analyses of 
thick plates is similar. 

In order to illustrate the procedure three typical 
example problems have been solved and the results 

compared with those of the exact method, where 
possible. The comparison study has yielded interesting 

results which demonstrate the versatility of the pro- 

posed procedure. 

FORMULATION OF THE PROBLEM 

The governing equation for steady heat conduction 

in a solid is given as : 

and the associated Fourier’s law of heat conduction for 
isotropic solids may be expressed as: 

(4 

In equations (l)--(3), q,, q,,, q, and T are heat flow 
components and temperature field respectively. k is the 
thermal conductivity and u”’ the rate of heat generated 
in the body. 

In carrying out further formulation the following 

symbols will be used: 

a = a/ax, /r = (7184’. 

i’ = sjaz, q, = q. 

;J = a2 + p* = v2. 14) 

Substitution of equations (2) and (4) in equations (1) 

and (3) leads to the following expressions : 

(q = kj’7’+ U” 15) 

[T= _ yik. (6) 

The heat conduction problem is completely defined by 

equations (5) and (6). 
The general solution of equations (5) and (6) can 

now be expressed in terms of the unknown initial 

functions T,(x, y) and q&, y) on the reference plane; 
in other words T, and qO are the values of T(.w, y, z) and 
q(x, y, z), respectively, evaluated at z = 0. This can be 
carried out by expanding the general solution of (5) 
and (6) in MacLaurin series as 

W, !‘> 2) 

= T,(x, !‘) + z[ST],,, + ;; [prJZ=() + ,_,. 17) 

Y(X> !‘> 2) 
,2 

= 40(x, Y) + z[5q],=o + i-i [5%],=, + ‘.I’ (8) 

The derivatives appearing in equations (7) and (8) 
can be readily derived from equations (5) and (6). 
Following the elimination of these derivatives the 

functions T and q can be completely expressed in terms 
of the initial functions To and qO and their partial 
derivatives with respect to x and I’ as 

-2 n’il 
T(x, y, z) = Lrr(z, ;I) To + Lr,(z, ;!) q” - 2 ip (9) 

Y(-x, 1’, z) = L,r(z, 7) 70 + L,,(s, ;:l q,, 110) 

where 

L,, = Lq4 = cos(;v). (11) 

LTq = - tT, sin(;Jz). 
i 

L,, = kysin(y,-). 

In equations (11) the linear differential operators 

LTr, Lqq, . etc., which can be expressed either in series 
form in powers of yz or in trigonometric functions of 
the argument yz, have been expressed in transcenden- 
tal form containing the trigonometric functions, for 
convenience sake. 

The heat fluxes, qX, qy can also be expressed in a 
similar manner as follows : 

qX = - ka(cos yz) 7;) + f (sin vz) y. (12) 
? 

qy = - kp(cos yz) T, + t (sin ;JZ) qo. (13) 
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Using equations (9)-(13) two- or three-dimensional 
problems associated with various boundary con- 
ditions can be solved. 

The method formulated will now be illustrated by 
applying it to heat-conduction problems of thick 
plates. Three representative example problems are 
solved for this purpose. 

SAMPLE PROBLEMS 

The general expressions for the temperature T 
(x, y,z) and the heat flux q(x, y,z) as given by equa- 
tions (9) and (10) are used for forming the governing 
equations in the form appropriate to the nature of a 
particular problem for which the solution is desired. If 
no truncation is carried out in the series expansions of 
these equations for forming the governing equations, 
then the solutions to the latter are exact. The solutions 
can be assumed in the desired form such that they 
satisfy the prescribed boundary conditions exactly. 
This procedure was in fact employed for obtaining 
exact solutions in respect of three typical two- and 
three-dimensional problems and the solutions were 
found to be identical to those obtained by the method 
of separation of variables. The corresponding results 
are not presented here since the purpose of this paper is 
to demonstrate the versatility of the proposed method 
in obtaining approximate solutions in closed form. 

On the other hand the governing equations formed 
with respect to a finite number of terms retained in the 
series, referred to above, lead to approximate so- 
lutions, the order of accuracy achieved depending on 
the number of terms considered in the series expan- 
sion. Using this procedure approximate solutions will 
now be obtained for three representative sample 
problems. 

Example 1: Two-dimensional problem with both tem- 
perature and heat flux boundary conditions 

The problem can be stated as follows (see Fig. 1) 

-lGx,<l, -hQz<h, -co~y<co 

T= T(x,z) 

T(-I,z)=T(l,z)=O (14) 

q(x,h)+Q(x)=O; q(x,-h)=O (15) 

FIG. 1. Coordinate system and boundary conditions for 
exaniple 1. 

Q(x) = Qot-1 - (x/021. (16) 
Solution. Using equations (10) and (11) and satisfy- 

ing the boundary conditions (15) and also noting the 
two-dimensional character of the problem (i.e. y = 01), 
the following equations are obtained : 

&(h) . T, + &j,(h) . qo = - Q(x) 
(17) 

- L,,(h) . To + L,,(h) . q. = 0. 

The second of equation (17) is satisfied by taking 

To = &,(h) ‘0, q. = L,,(h) .@. (18) 

Substitution of equation (18) in the first of equation 
(17) leads to the following governing equation for @: 

ka . (sin 2crh) . CD = - Q(x). (19) 

The governing equation and the expressions for T 
and q, as given by equations (19), (9) and (12) 
respectively, when expressed in series form, are given 
as: 

ka 2ah _ (2W + (2aW ___ __- 
3! 5! “” I @ = - Q(x) 

(20) 

T= 1-;aZ+$Y.4-..., 
[ 1 

F 1 -;a2+;a4-..., I 0 

I 

23 25 
+ -z++a2-51a4+..., 1 

ha’-$.x4+;&... 1 @ (21) 
q,= - kuT. (22) 

In forming equations (20)-(22), equations (11) and 
(18) have been made use of. It can be observed that the 
coefficients of @ as given in equation (20), have been 
obtained in series form in even powers, 2n, of the 
differential operator a, (n = 1,2,. . co). Solution to this 
equation can be obtained after retaining only a finite 
number of terms in the equation. The number of terms 
to be considered depends on the desired degree of 
accuracy and the type of the problem considered. As n 
increases from 1 to a finite number, say N, the number 
of boundary conditions associated with the problem 
that can be satisfied at each edge of the slab (in x 
direction) is equal to N and, therefore, the number of 
terms in the series, associated with powers of z in 
equations (21) and (22) that must be considered, is also 
N. Consequently, as the order of the governing 
equation increases the complexity of the problem also 
correspondingly increases. 

In order to demonstrate the procedure, solutions 
corresponding to the first and second order approxi- 
mations are obtained in the following manner. For the 
sake of convenience, Q(x) is approximated by a 
polynomial function as given in equation (16). 
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First order approximation 

The governing equation for this case as derived from 
equation (20) with only the first term retained, and the 

boundary condition (14) consistent with the sym- 

metry of the problem about the z axis are obtained as : 

a2Q, = - Qo(l - x2!lZ)/2kh (23) 

q,(O, z) = T(I, z) = 0. (24) 

The series associated with powers of h and z in 

equations (20), (21) and (22) will be referred to as h- 
series and z-series, respectively. Consequent to the 

retention of one term only in the h-series of equation 
(20), it is necessary to retain one term only in each h- 
series of equations (21) and (22). However the order of 

equation (23), (which is 2n, n = l), requires retention of 
terms of the order of unity only in the z-series of 

equations (21) and (22). 
Integration of equation (23) and satisfaction of the 

boundary condition (24) lead to the solution. 

(25) 

where, 

Qo = 2QoW (26) 

Second order approximation 

Considering two terms only in equation (20) a 
fourth order differential equation is obtained. The 

corresponding governing equation and its solution can 

be written as follows : 

(d - HLYZ)@ = $ [l - (x/V] 
! 1 

(27) 

@ = A.coshH”‘x + B.sinhH”‘x + cx + D 

+ (u)(ig(i)(q 
+ {Q(;) - 6(;)}.($!2] (28) 

where 

*=$. 

T=O 

FIG. 2. Coordinate system and boundary conditions for 
example 2. 

In equation (28) the first four terms are the homo- 

geneous solutions and the remaining terms are parti- 
cular integrals. The constants A, B, C and D are 

determined from the boundary conditions. 

For this case two terms in each of the h-series and 

one term in each of the z-series in equations (21) and 
(22) must be considered, in view of the order of the 

governing equation being equal to 2n with n = 2 

Using equations (21) (22) and (28) the constants A. 
B, C and D can be determined from the boundary 
conditions (24). The final expression for T can be 

written as 

T= Ti&, = [fi +S2W2 +.f, 

(x//)~ + f4 cash H1 “x] 

+ (z,/h)[gI + g2(x/l)’ + g3 cash H’*.x] (29) 

where 

fi = (5/(96h); - h/12 + (4/9)h” 

fi = (hj12) - (l/16&; li = h;2/ 

.f3 = l/(96@; f4 = - (4,‘9)(h’icosh H’ ‘I) 

g1 = - 2P + K/2; gz = - I;!2 

g3 = 2F3/cosh H”‘/. 

It will be interesting to compare the above two 

approximate solutions with the exact solution, ob- 

tained by the method of separation of variables and 
associated with the boundary heat flux at z = it 

represented by a single harmonic function (i.e. Q 
(x) = Q,, sin nx/L with the origin located at the left 

edge of the slab, and L = 21) very nearly equivalent to 
the distribution of the present problem. 

The numerical values for the non-dimensionalized 
T at x = z = 0 for h/21 = k corresponding to first and 

second approximation of the present example are 
found to be equal to 0.3125 and 0.3006, respectively. 
Comparing these values with the exact value of0.2905, 
the percentage errors in respect of first and second 

approximation results are 7.5 and 3.46 respectively. 
Since the problem is asymmetric with respect to the S- 
axis, the solution corresponding to the first approxt- 
mation, which is found to be symmetric about this axis, 
gives very inaccurate results for non-zero values of z. 
The solution obtained from the second order approxi- 
mation provides reasonably good results for small 
values of h/21. For large values of h/21 approaching 
unity additional terms in equation (20) must be 
considered. 

Example 2: Two-dimensional problem with temperature 
boundary conditions only 

The problem may be stated as follows (see Fig. 2) 

o<.r < /, -h < z < h. .- / d \I< % 

T= T(x,z) (30) 

Boundary conditions : 

7-(x, - h) = T(x, hi = 0 (31) 
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T(O,z) = eo (32) 

Symmetry condition : 

qo = 0. (33) 

Solution. The general expression for the temperature as 
given by equation (9) subject to the symmetry con- 
dition (33) can be written as 

Z2 24 
1 -~Z!az+$?-..., 1 To. (34) 

Following the satisfaction of the boundary con- 
ditions (31), equation (34) gives 

r l-;a2+gY4-..., 1 r, = 0. (35) 

Solutions to equation (35) will now be presented for 
two cases (cases 1 and 2) corresponding to two and 
three terms, respectively, retained in the above h- 
series ; the governing equations for these two cases are 
given as 

Case 1: 

Case 2: 

(a2 - 2/h’) To = 0 (36) 

(37) 

Solutions to the second and fourth order equations 
(36) and (37) which permit satisfaction of one and two 
boundary conditions only, respectively, at each boun- 
dary associated with the X axis can be written as 

Case 1: 

T,(X) = E * e-px/h + F. @x/h. (38) 

Case 2 : 

In equations (38) and (39) A, B, C, D, E and F are 
arbitrary constants to be determined from the boun- 
dary conditions, and d1 to 1, and p are known 
constants. It may be pointed out here that the heat 
applied to the boundary at x = 0 with T = e. cannot 
be expected to have much influence at large distances 
from this boundary, since the slab is infinite in extent in 
the x direction ; from this physical consideration the 
constants F, C and D can be taken to be equal to zero. 
Consideration of one term only for case 1 and two 
terms only for case 2 in the z-series of equation (34), 
leads to the determination of the remaining constants 
E, A and B. The final solutions to the problem can then 
be written as: 

Case 1: 

T/e, = (1 - z2/h2)e-ax’h (40) 

Case 2 : 

T,&, =(-&)+{ ” ?’ z4 “:i 1 -h’ T+F.5 .e-‘lxlh 

z2 n; z4 n; - 1 - h2-.2 + P.Z .e-nZxih (41) 

where 

B=J2 

1, =(6+2J3) 1’2, 1, = (6 - 2,/3)“2. 

It can be observed from equations (40) and (41) that 
the boundary conditions (31) are exactly satisfied. 
However, the boundary conditions (32) is not exactly 
satisfied since the number of terms considered in the z- 
series of equation (34) for satisfying this boundary 
condition is less by one than the corresponding 
number of terms retained in this series for forming the 
governing equations (36) and (37). This point will now 
be examined in greater detail. 

The expressions for the temperature at the boun- 
dary x = 0 obtained from equations (40) and (41) and 
also the corresponding expression as given by the 
method of separation of variables, (see equation 4-71, 
p. 199 of [2]), are given as 

Case 1: 

Case 2 : 

Case 3 : 

T/e, = 1 - (~/h)~ 

T/e, = 1 - (z/h)4 

T/e, = (2/h) ; y cos 6, z 
n=O 

(42) 

(43) 

(4) 

where 6, = (2n + l)n/2h, n = 0,1,2,. . . . 
Equations (42) and (43) satisfy the boundary con- 

dition at x = 0, exactly at the point z = 0 and at points 
with z # 0 the errors are of the order of .z2 and z4 for 
cases 1 and 2 respectively. Clearly case 2, in which the 
number of terms retained is greater by one than that 
for case 1, gives more accurate results than case 1. The 
accuracy of results can be increased by retaining more 
number of terms in the z-series of equation (34), which 
inevitably increases the complexity of the problem. It 
may be noted that case 3, which corresponds to the 
method of separation of variables, can satisfy the 

a, 

FIG. 3. Coordinate system and boundary conditions for 
example 3. 
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boundary condition at x = 0 only by considering 

sufficient number of terms in the Fourier cosine series; 
it is interesting to note that this method cannot satisfy 

the boundary condition exactly by retaining one term 

only even at z = 0, whereas the present method does, 
irrespective of the number of terms considered in the 

general expression for the temperature. 

Example 3: Three dimensional problem with mixed 
boundary conditions 

The problem may be stated as follows (see Fig. 3): 

T= T(x, y,z) 

OdX<X, -I<y</, -h<z<h 

Boundary conditions : 

qy(x, - I, 2) = qy(x, 1, z) = 0 (45) 

q(x, y, +I I7) - H,[T(s, I’, k h) - i(x, y,] = 0 (46) 

T(0, y, z) = F(y) = H, cos mny/l; 

m=o,1,2 ,,.. %. (47) 

Symmetry condition : 

q, = 0. (48) 

Equation (46) is a simple form of radiation boundary 
condition which is similar in form to the commonly 
employed convective boundary condition. In this 

equation H, is the radiative boundary conductance, 

which is assumed to be a constant in the present 
problem, and <(x, J‘) is the temperature of the en- 

closure around the slab. 
Substitution of equations (9) (10) and (48) in 

equation (46) leads to 

i 
$ sin ;rh - cos yh T, = - [(x, y) (49) 

, ,’ 

where 

B, = hH,lk. (50) 

Equation (49) is the governing equation whose 

solution can be determined for a given distribution of c 
(x, y). For the purpose of illustrating the procedure, c 
will be taken to be a constant, It is convenient to obtain 
the solution by considering < to be a reference 

temperature such that 

T(x, I’, z) = T(x, !‘, z) + i 

and the modified problem associated with T(x, J’,z) 
can then be stated as follows: 

;f = T(x, 4’, z) (51) 

Boundary conditions : 

q(x, I’, h) - H,~‘(x, y, h) = 0 (52) 

T(0, y, z) = F’( 4;) = 0, ~0s mrry/l; 

T(rr;,y,z) = 0 (53) 

q0 = 0. (54) 

The modified governing equation derived from 

equations (9) and (10) with 7” replaced by ;i;, and from 
equations (52) and (54) can be expressed as 

p;h sin yh - B, cos $I I ii, = 0 (55) 
Equation (5.5) can be expanded rn series in even 

powers of yh. The accuracy of the solution to this 
equation is dependent on the number of terms retained 

in the series. For illustration the governing equation as 
derived from equation (55) with first three terms 

retained in the series will now be considered fc>r 
obtaining the solution. 

The corresponding governing equation and the 
associated solution satisfying the boundary conditions 

(53) are given as 

Governing equation : 

Solution : 

where 

A, = [s: + (rl,h)2]’ 2; g, = [a: -t &$,‘I’ 2 

6 1.2 = [(PI Yk u: - 48,)’ '~!W21' 2 (58) 
fi, = (1 + 2/B&2; /II = (I -1 4!B,)i24 

‘1, = mrql. 

In the expression for 6, and ci, as given by equatton 
(58) the positive and negative signs correspond to the 
subscripts 1 and 2 of 6 respectively. It may be noted 
from the equation (57) that the boundary condition 
(52) is exactly satisfied while the first of boundary 
condition (53) (at x = 0) is exactly satisfied at the point 
z = 0 and at points with z # 0 the error is of the order 

20 ---T-T--- 

Br = IO 

h/P”0 4 

FIG. 4. Temperature distribution along the length of the plate 
at z/h = 0, 1: y/I = 0: 2: ~"1 = 0.S 
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Br =10 

h/t--0,4 

o-o 0 25 0 50 0 -75 

Y/1 

FIG. 5. Temperature distribution across the width of the plate 
atx/h=O.l,l:z/h=0;2:z/h=l. 

of z4. This behaviour was also observed in the previous 
example, and the reason given there for this behaviour 
holds good for the present example also. The presence 
of the decaying exponential functions in the solution 
(57) suggests that the second of boundary condition 
(53) is also satisfied. 

In order to provide a better insight into the nature of 
the general solution (57) a numerical example has been 
solved by taking F’(y) = ~(1 + cos rry/l), (see Fig. 3), 
for B, = 10 and the thickness ratio h/l = 0.4. Figures 4 
and 5 display the corresponding temperature distri- 
butions at three different cross sections, while Fig. 6 
shows the distribution in the thickness direction at 
x/h = 0.1 and y/l = 0. It is clear from Fig. 4 that the 
temperature distribution exhibits a decaying character 
with increases in x/h values as indicated by the 
presence of the exponential functions in the solution 

(57). 

CONCLUSIONS 

A mixed method for the three-dimensional analysis 
of steady heat conduction in solids was presented. One 
of the interesting features of the formulation was the 
flexibility offered in prescribing the boundary con- 
ditions in terms of either the temperature or the heat 
flux, or both. The forte of the method was its ability in 
providing approximate solutions in closed form. It was 

1 

FIG. 6. Temperature distribution across the thickness of the 
plate at x/h = 0.1 and y/1 = 0. 

demonstrated through example problems that the 
approximate solutions would lead to results of 
engineering accuracy. 
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SOLUTIONS DES PROBLEMES DE CONDUCTION THERMIQUE 
PAR UNE METHODE MIXTE 

R&urn6 - On presente une methode mixte pour l’analyse tridimensionnelle des problbmes de conduction 
thermique stationnaire. La mtthode developpee permet la traduction des conditions aux limites en terme soit 
de flux ou de temperature, soit des deux. Les expressions g&&ales de la temperature et des flux sont obtenues 
sous la forme de series puissances de I’operateur linhire qui opere sur un systeme de fonctions initiales a 
determiner par les conditions aux limites donnbs. Un des caracteres importants de cette mtthode est son 
aptitude a fournir des solutions approchbs sous une forme analytique. Pour illustrer la procedure, on r&out 
quelques problemes reprbentatifs de plaques epaisses dont les solutions sont dune precision interessante 

pour I’ingenieur. 
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L&UNGEN VON WARMELEITUNGSPROBLEMEN DURCH EIN 
KOMBINIERTES VERFAHREN 

Zusammenfassung-Es wird eine kombinierte Formulierung fur die dreidimensionale Untersuchung von 
stationLen Warmeleitproblemen angegeben. Das entwickelte Verfahren gestattet Vorgaben der Randbedin- 
gungen entweder durch Angabe der Temperatur oder des Wlrmestroms oder einer Kombination von 
beiden. Die allgemeinen Ausdriicke fiir die Temperatur und die Warmestrome werden in Form einer 
Potenzreihe der linearen partiellen Differentialoperatoren angegeben, die von einem Satz von Anfangsfunk- 
tionen, bestimmt durch die vorgegebenen Randbedingungen, dargestellt werden. Eine der wichtigsten 
Eigenschaften dieses Verfahrens ist die Miiglichkeit, Naherungslosungen in geschlossener Form anzugeben. 
Urn die Vorgehensweise zu veranschaulichen, sind einige reprlisentative beispielhafte Problem dicker Platten 
gel&t worden, bei denen die entsprechenden Losungen zu Ergebnissen von ingenieurmlRiger Genauigkeit 

fiihren. 

PEIIIEHME 3AAAq TEIlJIOfIPOBO~HOCTM KOM6HHMPOBAHHUM METOflOM 

hmoTaunn- AaHa KOM6HHkfpOBaHHan @OpM)'nklpOBKa CTaUHOHapHbIX sanar TennonpoBonHoc*M. 

npennaraeMbIfi MeTon n03BonxeT ablpa9aTb 3anaeaeMble rpawiwb~e ycnoma repel reh4neparypy 
Knn "JIOTHOCTb TennOBOrO flOTOKa, HJIH Vepe3 I(X CO'IeTaHNe. nOJly'ieHb1 06We BbIpaX(eHHn ilJlB 

TeMIEpaTypbI B "JIOTHOCTR TenJIOBOrO "OTOKa B BHne pRnOB n0 CTe"eHRM nMHefiHblX iUN$@epeH- 

UHaflbHbIX oneparopon, KOTOpbIe LiefiCTBylOT Ha CHCTeMy @YHKUHii. onpenenaerdbrx C no~oi4.w 

3anaBaeMbIx rpaHW',HbIX YCnOBHfi. O~HBM H3 OCHOBHbIX ~OCTOHHCTB MeTOLEl IlBnReTCIl TO, 'iTO OH 

n03BOnfleT nony'iarb npw6neXceHHbIe peUleHHR B JaMKH,'TOM BkiDe. C IlenbIO WUIiOCTpaIUiH MeTO& 

naH IlpHMep peLUeHEi5l HeCKO."bKHX XapaKTepHbIX 3aJiaY JlnR IlnaCTAH 6onbmOii TOnWiHbI. TOYHOCTb 

nO,l,",eHHbIX pe3j'nbTaTOB COOTBeTCTByeT Tpe6OBaHWlM, npeNS3BiWeMbIM AH)ICeHepHbtMH piiC+-raMH. 


